show understanding that all physical quantities consist of a numerical magnitude and a unit

Mass can also be in gram, pound, kati, ...

recall the following base quantities and their units: mass (kg), length (m), time (s), current (A), temperature (K), amount of substance (mol)

SI Units		Dr K M Hock	
Sci	entists standardise uni	ts for:	
		unit	symbol
ST	mass	kilogram	kg
	length	metre	m
	time	second	S
	current	ampere	Α
	temperature	kelvin	K
	amount of substance	mole	mol

These are called base units - all others can be derived.

e.g.
$$1 \text{ cm} = \frac{1}{100} \text{ m}$$

 $1 \text{ gram} = \frac{1}{1000} \text{ kg}$

e.g. velocity : metre per second = m / s density : gram per cubic cm = g / cm force : newton = kg . m / s energy : joule = kg . m / s electric charge : coulomb = A . s

(will explain in later topics)

use the following prefixes and their symbols to indicate decimal sub-multiples and multiples of the SI units: nano (n), micro (μ), milli (m), centi (c), deci (d), kilo (k), mega (M)

Prefixes		Dr K M Hock		
We know 1 kg	g = 1000 g, 1	$cm = \frac{1}{100} m.$		
	k, c are prefixes.			
Prefix	symbol	meaning		
nano	n	10 ⁻⁹		
micro milli	μ m	10 -6 10-3		
centi	C	10 -2		
deci kilo	d k	10-J 10 3		
Mega	M	10 <i>6</i>		
R.g. lns	$= 10^{-9}$ s			
Ιμ۹	$= 10^{\circ}$ g			
$ Mm = 10^6 m$				
e.g. convert density of water from 1 g/cm ³ to km/m ³ .				
Recall 19	= 0.001 kg	(*: kg = 1000g)		
l cm = 0.0 l m				
Use algebra:				
lg/cm ⁷ = U.OUI kg/(0.01 m) = 1000 kg/m ³				

show an understanding of the orders of magnitude of the sizes of common objects ranging from a typical atom to the Earth

Orders of Magnitude		Dr K M Hock
means r	rough value - in	physics - within factor of 10
(Wiki) e.g.	0.) nm	atom
	10 mm	cell wall thickness
	100 nm	Virus
	1 jun	red light wavelangth
	10 jun	blood cell Water droplet
	100 µm	hair width
	mm	ant
	Com	mosquito
	10 cm	radio wavelength
	lm	human height
	10 m	bus
	100 m	football court
	10 km	Mount Everest
	10000 km	diameter of Earth

Scalar and Vector Dr K M Hock Vector has direction. Scalar does not.

Scalar : e.g. mass, time, distance, speed, energy, temperature

Vector : e.g displacement, velocity, acceleration, force.

e.g. I walk 100 m east.

distance = 100 m (Scalar) displacement = 100 m, east (vector) magnitude direction e.g. 3m/3 0 7402 Throw a stone. Speed = 3 m/s (scalar) Velouity = 3 m/s, 40° to horizontal (vector) mognitude direction.

describe how to measure a variety of lengths with appropriate accuracy by means of tapes, rules, micrometers and calipers, using a vernier scale as necessary

Measuring Lengths

Dr K M Hock

Vernier Calipers

Micrometer screw gauge

*Sleeve is the most prevalent name. May also be called the *barrel* or *stock*. **Aka *lock-ring*. Some mics have a *lock lever* instead.

5.5 + 0.28 5.78 mM describe how to measure a short interval of time including the period of a simple pendulum with appropriate accuracy using stopwatches or appropriate instruments

Short Time Intervals

Dr K M Hock

e.g. Can use stop watch to measure time.

W.k:

What if interval is very short?

Time taken to press stop watch can give error.

One way to reduce error:

1. Count many Cycles, l.g. 20. 2. Measure total time. e.g. 17.25 3. Divide by No. of cycles. eg. 17.25